intel
2 hH K&
(BB RELEH T

Multi-core Programming
—Student Workbook

Yang Quansheng (4)

Base on Intel’s manual

School of Computer Science & Engineering

Southeast University

Lab. 1: Intel® Compiler Switches

In this activity, you will set up environment and compile with both Microsoft* Visual C++.NET
(MSVC*) and Intel® C++ Compiler (icl).

Setting up

1. Open an Intel compiler command prompt window (Start -> All Programs ->Intel(R) Software
Development Tools -> Intel(R) C++ Compiler 10.0 -> Build Environment for 1A-32 Applications).

2. Using Windows Explorer, navigate to the Compiler Switches folder (this is in the directory where
you initially copied the class files) and unzip the file RayTrace2.zip, if it has not already been
unzipped.

Compiling with MSVC*
1. Using the Intel compiler command prompt, change to the Raytrace2 directory:

> cd source \raytrace2
2. Make the files and clean up:
> nmake /f raytrace2.mak clean

3. Complete the process:

> nmake /f raytrace2.mak CPP=cl.exe

Rendering the Image
1. Render the image by executing the following script:
> raytrace2 320 240

> Press ‘g ' to begin the render
> Press ‘g ' to quit the application

2. Record time elapsed

Compiling with Intel C++ Compiler
1. Make the files and clean up:

> nmake /f raytrace2.mak clean

2. Complete the process:

> nmake /f raytrace2.mak

3. Render the image by executing the following script:
> raytrace2 320 240

> Press ‘g ' to begin the render

> Press ‘g ' to quit the application

4. Record time elapsed

Using High Level Optimizer (-O3)
1. Compile for high-level optimizations (HLO):

> nmake /f raytrace2.mak clean

> nmake /f raytrace2.mak CF="-03"
2. Render the image.

3. Record time elapsed

Using Inter-procedural Optimization (-Qipo)
1. Compile for inter-procedural optimizations:

> nmake /f raytrace2.mak clean

> nmake /f raytrace2.mak CF="-Qipo" LF="-Qipo"
2. Render the image.

3. Record time elapsed

Using Profile-quided Optimization (-QOprof gen, -Oprof use)
1. Compile to create PGO instrumented binary:

> nmake /f raytrace2.mak clean

> nmake /f raytrace2.mak CF="-Qprof_gen -Qprof_dir ..\RayTrace2"
2. Render the image.

Note: Time period reported for the instrumented executable would be of considerable length.
3. Record time elapsed

4. Compile to ‘use’ PGO information:

> nmake /f raytrace2.mak clean

> nmake /f raytrace2.mak CF="-Qprof_use Qprof_dir ..\RayTrace2"
Note: Ignore messages stating “no .dpi information.”

5. Render the original image (from Step 2).

6. Record time elapsed

Using Vectorization (-QxP)
1. Compile for vectorization:

> nmake /f raytrace2.mak clean

> nmake /f raytrace2.mak CF="-QxP"
2. Render the image.

3. Record time elapsed

Using All Optimization Options (-O3, -OxP, IPO and PGQO)
1. Compile using the following options: -O3, -QxP, IPO, and PGO:

> nmake /f raytrace2.mak clean

> nmake /f raytrace2.mak CF="-03 -QxP -Qipo -Qprof_use - Qprof_dir .. \RayTrace2"
LF="-Qipo"

Note: You need not collect additional profile information; use the existing profile from “Using

Profile-guided Optimization”.

2. Render the image.

3. Record time elapsed

Lab. 2: Basics of Intel® VTune™
Performance Analyzer

Collect Sampling Data for the Clockticks Event

. Make sure that the virus scanner is disabled.

. Double click the VTune Performance Analyzer icon on the desktop.
. Click New Project.

. Click Sampling Wizard.

. Click OK.

. Select Window*/Windows* CE/Linux Profiling.

. Uncheck Automatically generate tuning advice.

. Click Next.

9. In the Application To Launch text box, type:
D:\classfiles\VTuneBasics\gzip\release\gzip.exe

10. In the Command Line Arguments text box, type:-f testfile.dat

11. Click Finish. The VTune analyzer will now launch and profile gzip.
Figure Sampling Configuration Wizard

oo N o o WN =

Sampling Configuration Wizard for Win32/64*/Linux* Environment (Ste... EIE|

g 1 Machine Name:
\ﬁa Remote ...

Application
Application to launch; ™ Mo application to launch

|E: \clazsfileslabs\wiunehgziphrelease\azip. exe
Command line aiguments:

|rr testfile. dat

‘wrking directon:
|E:\classfiles\lahs\vtune\gzip\release\

[Modify defaull configuration when done with wizard
v Fun Activity when done with wizard

Hint:

Specify the executable that launches the modales pou wish ta analyze

< Back | Mext » | Finigh Cancel Help

Questions

What function in gzip.exe takes the most time?

Which function in gzip.exe has the highest CPI?

Which line of source in gzip.exe has the most clocktick samples?
Is gzip.exe multithreaded?

Create a Sampling Activity

1. Create a new Activity by clicking on Activity->New Activity.
2. Click Sampling Wizard.

3. Click OK.

4. Select Windows*/Windows* CE/Linux Profiling.

5. Uncheck Automatically generate tuning advice.

6. Click Next.

7. In the Application To Launch text box, type:

D:\classfiles\VTuneBasics\matrix_mt\release\matrix.exe

8. Click Finish.

9. After the VTune analyzer finishes collecting data, click the Process button.

10. Click CTRL+A to select all processes.

11. Click the Display Over Time View button X, shown at left.

12. You can now see when each of the different processes was running. You can do this for the

Process, Thread, and Module views.

13. To zoom in on a particular time region, select the time region by clicking and dragging over it.
Then click the Zoom In button® | shown at left.

14. To see the regular sampling view for that time region, click the Regular Sampling View
button®, shown at left. You will now be able to drill down into your code for that time region.

Collect the call graph data

. Create a new Activity by clicking on Activity->New Activity.

. Double click Call Graph Wizard.

. Click Windows*/Linux* Profiling.

. Click Next.

. Type: D:\classfiles\VTuneBasics\gzip\release\gzip.exe in the Application to launch text box.
. Type -f testfile.dat in the Command Line Arguments text box.

7. Click Finish.

What function has the most time spent in it and what functions are calling it?

oo O WD =

Collect Samples Based on the Clockticks Event using the

Command Line Interface

1. Open the command prompt by clicking Start->Programs->Accessories->Command Prompt.

2. Go to the following directory by typing:D:\classfiles\VTuneBasics\gzip\release\

3. Create a new Activity that will launch gzip and collect samples based on the Clockticks event by
typing:vtl activity gzip —c sampling —app gzip.exe,"-f testfile.dat”

4. Run the last Activity created by typing vtl run.

(Alternatively, you can append the word “run” to the end of the command in Step 3 to

run the Activity immediately after it is created).

View the Profiling Data for gzip

1. Type: vtl view —_modules to see the number of samples for each module system-wide.
2. Type: vtl view —hf —mn gzip.exe to see the function level breakdown of the samples in gzip.exe.

Pack the Data and View It in the GUI

1. Type vtl pack gzip.

This creates a file called gzip.vxp. This file can be transported from computer to computer and also
opened in the VTune analyzer's GUI.

2. Start VTune Performance Analyzer (For example, by double-clicking the desktop icon, if

present.)
3. Click Browse for Existing File.
4. Open: D:\classfiles\VTuneBasics\gzip\release\gzip.vxp
5. Click OK.
6. Click OK.
The GUI displays the performance data.

Lab. 3: Intel® Math Kernel Library

Matrix Multiply Sample

This activity demonstrates performance characteristics of BLAS levels 1, 2 and 3, compared to C
source code. In this activity you will inspect, build and run a matrix multiply sample using source
code, DDOT, DGEMV and DGEMM.

1. Navigate to the folder MKL_Overview\DGEMM, and open the file mkl_lab_solution.c using
any editor of your choice. Go through the code quickly to confirm the 4 implementations of
matrix multiply.

2. Examine the Makefiles supplied, and identify the key link steps to enable using MKL.

If necessary, edit the file so that all include or library paths are correct. Use these Makefiles to build

the demo. Run the programs and record the timings.

3. Note differences in timings among the different implementations:

rool_your_own:

using DDOT:

using DGEMV:

using DGEMM:

4. MKL functions assume a default threads value of 1. Change this value by setting the
environment variable OMP_NUM_THREADS, for example:

set OMP_NUM_THREADS=2

5. Observe the performance at different numbers of threads.
What happens then that the number exceeds the physical processors?

Monte Carlo Calculation of Pi

In this activity, you will modify the Monte Carlo computation of pi to use the random number feature
of the Vector Statistical Library (VSL). You will also make use of the multithreading capabilities of
VSL.

1. Navigate to the folder MKL_Overview\MonteCarloPi, and open the file pimonte.c using any

editor of your choice. Go through the code quickly to understand how the rand() function is
implemented.

Thought question: Could this loop be threaded?

2. Examine the file pimonte_VSL.c, and understand the changes necessary to implement a library
call to replace rand().

Thought questions: Why is this not a 1:1 substitution for rand()?

What is the purpose of, and sensitivity to, blocksize?

What are the parameters BRNG and VSL_BRNG_MCG31?

Are they the best choices for this computation?

Could this implementation be threaded?

3. Examine the Makefiles supplied, and identify the key differences. Use these Makefiles to build
versions of this application with rand() and with VSL (recall the syntax "make -f'). Note the
impact of the "-xP" switch in the compiler report, in the two versions. Note also the difference in
results for pi, and for the run times of each image.

4. As in the previous exercise, change the number of threads used and observe the changes in
both performance and in the value of p.

Lab. 4: Programming with Windows*
Threads

Build & Run HelloThreads Program

. Close Microsoft Visual Studio, if it is started.

. With Windows Explorer*, open the folder D:\classfiles\Win32 Threads\HelloThreads\.

. With Microsoft Visual Studio, open the file HelloThreads.sIn by double-clicking it.

. From the Build menu, select Configuration Manager and then select Debug build.

. From the Project menu, click Properties and then click the C/C++ folder.

. Make sure that Debug options are selected, as shown in Figure 4.1.

. Make sure that Optimization is disabled, as shown in Figure 4.2.

. Make sure that thread-safe libraries are selected, as shown in Figure 4.3.

9. Make sure that Debug symbols are preserved during the link phase, as shown in Figure 4.4.

10. From the Build menu, select Build Solution to build your project.

11. From the Debug menu, select Start Without Debugging to run the program.

12. In Microsoft Visual Studio’s Solution Explorer, expand the HelloThreads project and select the
file main.cpp to open it, as shown in Figure 4.5.

13. Modify the thread function to report the thread creation sequence (that is, “Hello Thread 0”,
“Hello Thread 1”7, “Hello Thread 2”, and so on).

Hint: Use the CreateThread() loop variable to give each thread a unique number.

o N o o0 WODN =

14. Build and execute your program.
In what order do the threads execute?
Do the results look correct?

Why or why not?

Review Questions

The execution order of threads is unpredictable.

True False

What build options are required for any threaded software development?

HelloThreads Property Pages

elloTl
Corfiguraton: | aeteiebug) ﬂ| Blatform: |setweiwings) | q | ,I: ligration: |sctveebug) - | Blatirm: |actwe(Wini) =] Cgnfiguration Manager...
= Conficuration Fropert] | Aditional Inc s Directories ST S — I [T vic-sbicd (/0d) JI
Gorwral Garral ™
Derncyig Progeam Database (/21 s 3 { E Cofadt
Cloes [aereer | Enabie InTnse Functons: 0
% Gereral Warning Lewal 3 (/W3) Gereral Flating-Point Cons istency Dwfalt Conshstency
PO Cutoet B Pertabity b o Fans S s Sanel tasiae
s Treat varminegs s Errons o TOpronEsr Omit Frama Pantees Mo
Code Coneration Coxder GOOOratin| | by Fir-sshe Cptirvizations. (™
Languaga L':‘_"“:"’mm Gptimize For Processar Blerdod
Precompiled Hed ol utimize For Widows Agplcaton o
Cutput P Custpust Files
rarws Informa Brawsa Informa
- acvanced
Commare Lis Command Lina
ke CLrksr
(£ rowsa Informtion 3 Browas Irformmatiorn
£ Bukd Events 3B Beent
(3 Cuntom Buid Sop 23 Custom Guid Sep
3 web Doployment 22 s Dipierset
Dabar Intormation Format Opptimization
Spacifies. the typa of debugging Information gener ated by the compiler. You MUST Ao changs Sokoct opton for Cock optimization; choost CLEAN 1 L SPeafic CROMmEIton cotons.
< » Wrknr sostings appropriaey to match. (27, 2d, /2L) < * (f0d, f00, fo, fu)
ok Cancel | | Hep | [Cancal | | Hetn |

Figure 4.1. Project Setting — C/C++ Folder — Debug Options Figure 4.2. Project Settings — C/C++ Folder — Optimization Options

(5] [o popery pages a

| Congraton: [activeDetug) i Blatform: [activaganiz) Eal Corfguration Manager .. < [| platform: [active(winaz) | Configuration Manager...
al Conficuration Proportk| Enahla Sring Fooling ha I=3 Corfiguration Properties Generate Debug Info Yes {/DEBUG)
roral Enaihln Minimal Anbukd Ho General Generate Program Database File $(0utDir)i$(ProjectMame). pdb
Erabh o4 Entiptons s () Debugging Strip Private Symbals
Srmalker Trpe Chick Ha InkeliR) Specific Generate Map File Ho
- Qe+ Map File Hame
Optimization alti-theoadod Dobaig DUL (/M0d] ;'
19 0L [/hod) 23 Linker Map Exports Ho
% Cod Generanir e General WMap Lines Ho
| | uler Senurity Check Ve (1G5 Input P
Enable Function-Lavel L g o N Debuggable Assenibly 1o Debuggable attribure emitted
rebugging
Precampiled M e Erhanced Instnuction Sat hat Sat e
Cutput il Syskem
Browee Informa Optimization
Advarced Embedded I0L
Comemand Ling Advanced
Lk _ Command Line
—':"":,"“: "":"‘"""' (Z Resources
:.'mm'mu e (22 Browse Information
b (21 Build Everts
2 Wi Deployrnert Generate Debug Info
Runtime Lirary (22 Custom Build Step) .
Enables generation of debug information. {/DEBUIG)
Specky untma lbeary for lrking. (MT, MTd, MD, MDG, ML, ML) (21 Web Deployment
£ »
or cancsl | aopy | wep | 0k | Caneel | oo Help

Figure 4.3. Project Settings — C/C++ Folder — Thread-safe Libraries Options Figure 4.4. Linker Settings — Debugging Folder

[ob Solution HelloThreads' {1 project)

[Z1 Resource Files

[Salution Expilorer @ Tuning Browser E’ Class Wiew

Figure 4.5. Solution Explorer — HelloThreads Project

Approximating Pi with Numerical Integration

Build and Run the Serial Program
1. With Windows Explorer, open the folder C:\ classfiles\Win32 Threads\Pi\.

2. Start Pi.sIn by double-clicking it.

3. From the Build menu, select Set Active Configuration and then select Debug build.

4. From the Project menu, click Properties and click the C/C++ folder. From the Build menu,
select Build Solution to build your project.

5. From the Debug menu, select Start Without Debugging to run the program.

Is the value of the Pi (3.1415...) printed correct?

Why or why not?

Correct Errors and Validate Results
1. In Microsoft Visual Studio’s Solution Explorer, expand the Pi project and open the file, Pi.cpp.
2. On the C/C++ folder, make sure that thread-safe libraries are selected, as shown in Figure 4.6.

Pi Property Pages R
Clived | | Cenfiguration Manager.
Ersable String Poclrsy ™
Enable Mnimal Rebuid ho
Enable C++ Exceptions fes {fEHsc)
Smalkr Typa Chick o
Bl Chuzds Huth (BICT sspi o BICG0)
Puntime Lirary Multi-threaded Debug DLL {/MDd) ._||
e e TR

2] | Bustfer Security Check Yes (/G5)
Fnable Function-Lewel Linking o
Enable Enhanced Inatruction Sat Not St

Erowse Informa
Advancsd
Command Line

53 Cuttom Buld Step

£ web Deplayment

Runitime Library
Spocify runtime lbrary for ioking, (MT, MTd, MO, MO, ML ML

ok, Camnl | Apply Huly

Figure 4.6. Project Settings — C/C++ Folder — Thread-safe Libraries Options

3. Thread the serial code to compute Pi using four threads. The bulk of the computation being done
is located in the body of the loop. Encapsulate the loop computations into a function and devise
a method to ensure that the iterations are divided amongst the threads such that each iteration
is computed by only one thread.

4. Use a CRITICAL_SECTION to protect shared resources accessed by more than one thread.
Locate any data races in your program and correct those errors. Some logic changes from the
serial version might be required to create code that is both correct and safe.

Challenge:Minimize the number of lines of code in the critical section(s).

Hint: Think about local variables.

5. When you have changed the source code, from the Build menu, select Build Solution to
rebuild and then from the Debug menu, select Start Without Debugging to execute.

6. Keep correcting your source code until you see the correct value of Pi being printed.

The correct value of Piis 3.14159.

Hint: A complete solution to the lab is provided in the file PiSolution.cpp, which is located in

the following directory: D:\classfiles\Multi-Core\Windows\Win32 Threads\Pi\

Review Questions

All threads should use the same CRITICAL_SECTION.

True False

Threading errors in software can always be corrected by using only synchronization
objects.

True False

CRITICAL_SECTION objects should always be declared as global variables.
True False
What build options are required for any threaded software development?

Lab. 5: Threading with OpenMP
for Windows

Hello Worlds

Initial Compile
1. Within a "Build Environment for 1A-32 applications" command window, move to the HelloWorlds

directory:
cd Open MP/HelloWorlds

2. Compile serial code using the Intel compiler:
icl HelloWorlds.c

3. Run the program:

HelloWorlds.exe

Add OpenMP Directives

1. Add an OpenMP parallel directive to run the first four lines of main in parallel, but not the last line:
printf("GoodBye World\n");
#pragma omp parallel
{
...[Code to run in Parallel goes here] ...
}

2. Compile in "Serial Mode" using the Intel compiler:
icl HelloWorlds.c

3. Notice the pragma warning statements.

4. Fix any syntax errors.

5. Run the program:

HelloWorlds.exe

OpenMP Compile

1. Compile in OpenMP mode using the Intel compiler:
icl /Qopenmp HelloWorlds.c

2. Enable the environment for multiple OpenMP threads:
Set OMP_NUM_THREADS=2

3. Run the program in a multithreaded environment:

HelloWorlds.exe

4. Run the program multiple times, verifying if the results are the same every time.

Extra Activities

10

1. Change the code that you make parallel (for example, put the int i outside the parallel region).
2. Play with the OMP_NUM_THREADS settings. As you change the number of threads, do you get
the results you expect?

Computing Pi with Numerical Integration

1. Within Windows Explorer, move to the Pi directory (classfiles\OpenMP\Pi).

2. Double-click on the Microsoft* Visual Studio* Solution icon (pi.sIn) to launch Visual Studio. Build
the pi application.

3. From the Debug menu, choose the "Start without Debug (Ctrl+F5)" command to run the serial
application.

4. Record elapsed time:

Add OpenMP Directives
1. Determine the section of code to make parallel and add the OpenMP parallel directive:
#pragma omp parallel
{
...[Code to run in Parallel goes here] ...
}
2. Find the loop to make parallel and insert a worksharing pragma:
pragma omp for
for(xxx ; yyy ; zzz)
{
/ / Loop body
3. Examine all variables and determine which ones need to be specially declared. The following
may be handy:
pragma ompparallel private(varname ,varname)\
reduction (+:varname ,varname)\
shared (varname, varname)
{
. [Code to run in Parallel goes here] .. .
}
4. Depending on your implementation you may need the following. For any remaining shared
variables add appropriate locks, if you update that variable.
pragmaomp critical
{

. [Code in Critical section goes here] ...

OpenMP Compile and Run

1. Add the /Qopenmp flag to the compilation of the application. Since the project is using the Intel
compiler, you will find an "Intel Specific" section in the project Property Pages -> C/C++ ->
Language -> "Process OpenMP Directives". Set this to "Generate Parallel Code (/Qopenmp)"
and click OK.

2. Build and run the program in a multithreaded environment:

11

3. Record the time:

What is the speedup? (serial time / parallel time):

Monte Carlo Pi

Setup
1. With Windows Explorer, locate the Monte Carlo Pi directory:

classfiles\OpenMP\Monte Carlo Pi

Initial Compile

1. Double click on the Microsoft* Visual Studio* Solution icon (Monte Carlo Pi.sIn)

2. Build the solution; from the Debug menu, choose the "Start without Debug (Ctrl+F5)" command
to run the application.

3. Record Pi:

4. Record the serial time:

Add OpenMP Directives

1. Determine the section of code to make parallel and add the OpenMP parallel directive:
#pragma omp parallel
{

[Code to run in Parallel goes here]
}

2. Find the loop to make parallel and add the following:

pragma omp for
for(...) {
)

3. Examine all variables and determine which ones need to be specially declared. There are hints
within the source code with regards to some variables and arrays that need to be private to
each thread. The following may be handy:

#pragma omp parallel private(varname ,varname)\
reduction (+: varname , varname)\

shared(varname, varname)

{
[Code to run in Parallel goes here]

)

4. Depending on your implementation you may need the following. For any remaining shared
variables add appropriate locks, if you update that variable.

#pragma omp critical[(name)]

{

[Code in Critical section goes here]. . .

OpenMP Compile
1. Add the /Qopenmp flag to the compilation of the application. Since the project is using the Intel
compiler, you will find an "Intel Specific" section in the project Property Pages -> C/C++ ->

12

Language -> "Process OpenMP Directives". Set this to "Generate Parallel Code (/Qopenmp)"
and click OK.
2. Run the program in a multithreaded environment:
3. Record Pi:
4. Record the parallel time:
5. What is the speedup?

Extra Activities

1. Replace vsl routines with ascii rand, random, or rand48 functions, and try to get parallel speedup
(this maybe impossible).

2. Play with the BLOCK_SIZE settings.

Lab. 6: Correcting Threading Errors
with Intel® Thread Checker for
Explicit Threads

Find Prospective Data Races

The application computes the potential energy of a system of particles based on the distance, in
three dimensions, of each pairwise set of particles. The code is small enough that you may be able
to identify the potential data races and storage conflicts by visual inspection. If you identify and
make a list of problems, check your list with the list that Thread Checker identifies.

Build and Run Potential Serial Program

1. With Windows Explorer*, open the folder D:\classfiles\Thread Checker\potential_serial

2. With Microsoft Visual Studio, open the file potential_serial.sIn by double-clicking it.

3. From the Build menu, select Configuration Manager and then select Debug build.

4. From the Build menu, select Build Solution (or use Ctrl+Shift+B) and compile the executable.
5. Run the executable (Debug menu -> Start Without Debugging, or Ctrl+F5).

Build and Run Potential Threaded Program
1. With Windows Explorer*, open the folder D:\classfiles\Thread Checker\potential_win
2. With Microsoft Visual Studio, open the file potential_win.sIn by double-clicking it.
3. From the Build menu, select Configuration Manager and then select Debug build.
4. Ensure that the following compile and link flags are set correctly:

a. Debug options are set (/Zi)

b. Debug symbols are preserved during linking (/DEBUG)

c. Optimization is disabled (/Od)

d. Thread safe system libraries are used (/MDd)

e. The binary is re-locatable (/fixed:no)
5. From the Build menu, select Build Solution to compile the executable.

13

6. From the Debug menu, select Start Without Debugging to run the program.

Note: The number of particles and iterations has been reduced from the serial version of the

code in order to facilitate Thread Checker runs.

7. With Windows Explorer*, start the Intel VTune Performance Analyzer.

8. Start a New Project by clicking on the icon.

9. From the Category Threading Wizards, select the Intel® Thread Checker Wizard.

10. Set up the potential_win.exe application to be run by using the browse “...” button and then
click Finish to start Thread Checker.

11. Scan through some of the diagnostics displayed. Check the source code lines from some of the
diagnostics.

Can you see why there is a conflict on those lines of code?

Resolve Data Races

Resolve the Problems

1. Fix the problems identified by Thread Checker in the earlier lab. Which variables can be left to
be shared between threads? Which variables can be made local to each thread? Which
variables must be protected with some form of synchronization?

2. Be sure to re-run the corrected application through Thread Checker until you have no more
diagnostics being generated from the code.

3. Once you have eliminated all the threading problems, re-set the number of particles and
iterations that were used in the serial version. Re-build and run the code.

Do the answers from the threaded code match up with the output from the serial application?

Identifying Deadlock

Build and Run the Program
1. With Windows Explorer, open the folder D:\classfiles\Thread Checker\Deadlock\.
2. Open Deadlock.sIn by double-clicking it.
3. From the Build menu, select Configuration Manager and then select the Debug build.
4. Using the Debug configuration project, ensure that the following compile and link flags are set
properly.
a. Debug options are set (/Zi)
b. Debug symbols are preserved during linking (/DEBUG)
c. Optimization is disabled (/Od)
d. Thread safe system libraries are used (/MDd)
e. The binary is re-locatable (/fixed:no)
5. On the C/C++ menu, select the Command Line folder and add /Qtcheck by editing
the Additional Options, as shown in Figure 7.1.

Figure 7.1. Project Settings — C/C++ Folder — Compiler Options

14

v
Deadla

Configration; |Activa(Debu) ﬂ] Platform: |Actwfwing) = Cirifigur ation Manage.,

=3 Configuration Propartie] All Options:
Ganeral & [fralogo W3 f0d JD "WINGE® /D °_DEBUG® /D "_CONSOLE" /0 °_MBCS" fGm
Cebugang . fEHec RTCL MOd Fp®. ebugOeadiodk pch” Fo” Debug™ Fd”. Debug” Aad /TP
[utalfE Spacific ook

sl
Cptimization
Basr
Coxcky Garwr aticr |
Languags
Frecompilie He|
Qumput Files
Browsa Informal

Advanced
sl cpers:
S Crber [freo]
L Brawse Infor matior
(23 Build Evenibs.
L3 Custom Duild Step
(2wt Doplorprmient

< 3

| |

6. From the Build menu, select Build Solution to build your project.
Is this application using:

Source instrumentation? __

Binary instrumentation? ______

How can you tell which instrumentation type is used?

7. From the Debug menu, select Start Without Debugging to run the program.
Do the results look correct?

Why or why not?

Run Application within Intel® Thread Checker

1. Start VTune Performance Analyzer and select New Project.

2. From the Category Threading Wizards, select the Intele Thread Checker Wizard.

3. Set up the application to be run by using the browse “...” button and then click Finish to start
Thread Checker.

You should see either one of the two displays shown in Figure 7.2 and Figure 7.3, because

deadlock does not occur during every run.

Figure 6.2 shows the diagnostics list when the deadlock does not occur during the run. Intel Thread

Checker still catches it as a potential deadlock and it is listed with YELLOW bullets (circled in red),

which indicates CAUTION.

Figure 6.2. Diagnostic List When Deadlock Does Not Occur During a Run

Context[Best] - 0] Shart Description Severity Count Filtsred

i tdemony write at "Deadliock.cpp' 45 conflicts with &
"Deadiock.cpp'41 2 Eelad = Ywiite o prior memon read at "Deadlock. cpp':E7 [anti il False
e dependence)
Thread Info at "Deadlock.cpp' B4 - includes stack
WhoeHaganl 2 Thizadieinalon /] allacation of 1048576 and use of 4036 bytes ! Felss
Whale Fragiam 2 4 écﬁmggi?#eﬁ::as \\5/ A synchronization object "Deadlock.cpp™ 44 was 1 False
4 acquired in the wrong order at "Deadlock. cpp':42
wrong order
whole Program 215 }:c?l:}rig?:weﬁ:;vag \& A synchronization object "Deadlock.cpp™31 was |4 False
d acquired in the wrong order at "Deadlock. cpp™: 29
wiong order
o5 Thiead Info at "'Deadlock.cpp' B3 - includes stack
WholsFrogam:3: Thraattemtratior i] allocation of 1048576 and use of 4096 bytes 1 Fake
5 Thread Info at "Deadlock cpp' 54 - includes stack
j WhokeRrogiamsd: |7 it [allocation of 1048576 and use of 4035 hytes i e

Figure 6.3 shows the error list when the deadlock occurs during a run. When this occurs,the user
MUST kill the application by closing the DOS window opened by the application.4. Double-click on
one or more of the deadlock diagnostics (error or warning) in theDiagnostics window. Explore
what lines Thread Checker points out as being involvedin the deadlock diagnostics.

15

Figure 6.3. Diagnostic List When Deadlock Occurs During a Run

Contest[Bast] / D | Shot Description | Seveity | Description \ Cownt Filkered
Memory wiite at "D eadlock.cpp™29 conflicts with a
"Deadock.cpp™:27 1 Eﬁa? radl 0 prior mernory read st "Deadlock.cpp™ 67 [ant 1 Falze
AR dependence)
2 Memary wiite at "'Deadlock.cpp' 42 conflicts with a
"Dieadlock.cpp' 34 | 2 Z‘Eta? > Wiite o prior memary read at "Deadlock.cpp™ 29 [ant 1 Falze
aace dependence)
\Wiite > Flead Memory read at “Deadlock. cpp:42 conflicts with a
"Deadiock.cpp':34 | 3 o [tl? 5 o prior mernory wiite at *'Deadlock.cpp™: 29 [fow 1 False
e dependence]
Memory wite at "Deadlock.cpp™ 42 conflicts with a
Deaduck.cpp 34 | 4 \d""t“'? > Wite 0 e A DR S b False
Aace dependence)
= & Thiead at "Deadlock. cpp':68 is deadlocked
Whale Frogram1 |5 '3 TI;I‘eaE 'Sd o tiying to acquire a resource owned by a thread at - 1 Falze
cacincke "Deadlock.cpp' 64
A Thiead A Thiead at "Deadlock. cpp' B8 is deadlocked
‘Whale Program 2 B d d"eak 'Sd o tiving to acquire a rezource owned by athread at - 1 False
e "Deadlock.cpp™ B3
A Thiead at "Deadlock, cpp' 43 is deadlocked
‘Whale Program 3|7 i‘ Tlgll‘eas 'Sd 9 tiying to acquire a rezource owned by athread at - 1 Falze
eaciocke "Deadlock.cpp' 28
. A Thiead at "Deadlock. cpp': 30 is deadlocked
“Whale Program 4 | 8 'a‘ Tlgil‘eag 'Sd o tiying to acquire a resource owned by athread at 1 False
eaclocke "Deadlock.cpp' 41
7 Thread Info at "Deadlock.cop 47 - includes stack
WhlePiogianial |10 Thezad teminaliory (i] aloustion of 1048575 and o of 4036 bytes 1 False
“whale Program 6 11 Thread terminztion o ;mi:ﬁﬂ‘gfgr?h%‘g‘;‘é&ﬂ;ﬁg D?iﬁggm:z Stack, 1 Falze
Whale Program 7 12 Thread termination o ;Igzgﬁo‘rqrsf1‘04%85?%"?;1'3322 o?té‘ﬁnscmzz 3tk 1 False
4] |
Diagnostics | Stack Traces ! Source Yiew l

Correct Errors and Validate Results

1. Return to Microsoft Visual Studio to correct the program.

2. From Microsoft Visual Studio, edit the program and re-build it.

Hint: Notice the order that the CRITICAL_SECTION objects cs0 and cs1 are used in each

thread function work0() and work1().

3. When you have changed the source code, from select Build Solution the Build menu to
rebuild.

4. In the VTune analyzer environment, click the Activity menu and select Run to run Intel Thread
Checker again to validate that you have corrected all threading errors.

You can re-use the same VTune analyzer environment project; in fact, have the VTune analyzer

environment started and running while you change the source code in Microsoft Visual Studio.

Once you have no threading errors, the display will contain only informational messages.

Hint: Minor logic changes will be required to correct all threading errors.

A complete solution to the lab is provided in the file, DeadlockSolution.cpp.

Review Questions

1. What build options are required for any threaded software development?

2. What build options are required for binary instrumentation?

3. What build options are required for source instrumentation?

4. Under what category is the Intel Thread Checker found in the VTune analyzer environment?

5. Using a larger data set (workload) causes Intel Thread Checker to find more information (errors,
warnings, and so on). True False

6. Threading errors in software can always be corrected by using only synchronization objects.
True False

7. If a deadlock is present in an application, it will always occur at run time. True False

16

Testing Libraries for Thread Safety

Setting-up and Compilation for Thread Safety Testing

1. With Windows Explorer, open the folder D:\classfiles\Thread Checker\Thread Safe Libraries\.

2. Double click the Thread Safe Libraries.sIn Microsoft Visual Studio solution file to open the
projects for this lab. You will find two projects in this solution:

a. Library — this project will build a DLL containing some functions to be tested for thread safety.
This DLL can be thought of as either a user library or a third-party library.

b. Library Tester — this project is used to call the library functions and will be modified to test
the library routines for thread safety.

3. Using the Debug configuration, build and run the Library Tester project to better understand the
library routines. (This will also build the Library DLL.)

Note: Since we will be using OpenMP to generate threaded calls to the library routines

involved and Intel Thread Checker to determine if there are any data conflicts or other

problems, you must first convert the Library Tester project to use the Intel compiler.

4. Right-click on the Library Tester Project and select “Convert to use Intel[R] C++ Project System.”
Click “Yes” in the Confirmation dialog box.

5. Add some OpenMP parallel sections code to run each of the 6 pairwise combinations of the
three library routines on threads.

For example, to test the thread safety of a library routine, say foo(), with itself, use the following

code:

pragma omp parallel sections
{

#pragmaompsect ion
foo (x) ;

#pragmaompsect ion
foo (v)

}

6. Before building the threaded library testing application, be sure to set the compilation to use
OpenMP. Within the C/C++ configuration properties folder of the Language category, you will
see a sub-pane labeled “Intel Specific”. Under this, change the “Process OpenMP Directives”
item to “Generate Parallel Code (/Qopenmp).”

7. Rebuild the application.

8. After launching VTune, create a new project and define a new Thread Checker activity for the
library_tester.exe application. Run the Thread Checker activity. Were any diagnostics found?

Modifying Binary Instrumentation Levels

Even though the library DLL was compiled with debug symbols and information, Thread Checker
may not find any diagnostics - even if there are data conflict errors within the library. This is due to
the level of binary instrumentation used by Thread Checker.

The default binary instrumentation for user DLLs is “All Functions,” which will instrument each
instruction of those portions that have debug information. However, Thread Checker is unable to
locate the debug information data base file and lowers the instrumentation level to “API Imports”.
This reduced level will not instrument user code, but will instrument selected system API functions.

17

Thus, to ensure that the library functions are thread safe, we must manually raise the

instrumentation level of the DLL and re-run the analysis.

1. In the Thread Checker “Tuning Browser” pane, right click on the activity and chose the “Modify
Collectors” option.

2. In the dialog box that pops up, select the “Modify the selected Activity” radio button and click OK.

3. Click on the Instrumentation tab in the “Configure Intel Thread Checker” box.

4. Left-click on the “Instrumentation Level” entry for the “library.dll” row. Select “All Functions” from
the pull-down menu. In the lower right corner, click on the “Instrument Now” button to perform
the binary instrumentation of this DLL at the chosen level.

5. Click OK.

6. Re-run the Thread Checker analysis.

Were any diagnostics found this time?

Review Questions

1. Which combinations of functions are not thread safe?

2. If this were a third-party library, rather than a set of function to which you have source code
access, can you determine which functions were not thread safe in order to report this problem
to the library developers?

Figure 6.4. Setting binary instrumentation levels for DLLs and other modules.

Configure Intel(R) Thread Checker [2]]

Analysis | Disgnostics Instrumentation |

Instrumentation Stalus | Insumentation Level | Mocule Typs | \ Yersion
AP impotts User EXE Yes nono
Madu imparts System No 5.1.2600.2180

Module imports Systemn Mo 5.1 2600 2180

Debug Info

Module Name

=
Driginal location: |e\classhilestmult-corehhread checker\windows\thiead safe ibraries\debughibrary. di Add..
Instrumented location: |c:\tempheache’tc_cachelibray_c__classfiles_multi-core_thread checker_windows_thread safe Remove
libraries_debug.dl

Man instrumentation level: [Fullimage
Instrumentation messages: |Supply debug info or manually raise instrumentation level

Instrument Mows
Launching mode: |Automatic
Application talaunch: | \slassfilashm inoreithread chenk srwindowshthinad safe ihrariesidahigiiban_tester mxe

0k | Cancel Ay | e |

Lab. 7: Tuning Threaded Code with
Intel® Thread Profiler for Explicit
Threads

Getting Started

The application computes the potential energy of a system of particles based on the distance, in

18

three dimensions, of each pairwise set of particles. This lab is designed to give you an introduction

to running an application through the Thread Profiler and seeing what views are available within

the tool. You will also see what those views reveal about the execution of threads within an
application.

1. Find the Microsoft Visual Studio solution file D:\classfiles\ThreadProfiler\potential lab

1\Potential Lab 1.sIn.

2. Double-click the icon to open Microsoft Visual Studio and build the application.

3. Launch VTune Performance Analyzer and create a new Thread Profiler activity that will run the

executable generated from the previous step.

4. Run the application from within the Thread Profiler.

5. On completion of the run, you should see the Critical Path view as shown in Figure 7.1.

6. Double click on the critical path bar to go to the profile view. The “Concurrency Level” L view
should be the default. If this is not the case, click on the “Concurrency Level” button in the
toolbar.

7. Click on the other grouping buttons (“Threads View” X and “Objects View” pa). Click on the
bars and roll over portions of the windows to see what pop windows appear and what data is
contained within them.

8. Click on the Timeline Tab to see the “Timeline View” of the performance data. Explore the widow
displayed and click on parts of the display to see what information might be available from this

view.

Questions
From what you've seen, how would you characterize the performance of this application?

Are there any obvious performance issues?

Figure 7.1. Thread Profiler Critical Path View Screen

" ¥Tunc{ TM) Performance Environment - [Thread Profiler - File: 12:09 PH, 2003 Sep 26 (1 =101 |
Bple goe vew aciviy Confire Window leb =1& %)
HEH L LR (B | Q|| ® (k|||

TP 1ot evem 11203 P 2003 S 261 X |3 W

= Labl

= TP lablexe (1
& 1209PM, 20

L. 1-4R

« | » | |_cotical Paths [Proie | Tinelie

[[7%

- T aragetip O e Sgged
n by ok C.WINNT aystesdckohein of
5 natiumentstion of “ehwannliapitemITidtephedo O was chipped

Analyzing an Application

1. Return to the Profile tab and bring up the “Concurrency Level” view e
Approximately, what percentage of time was spent in serial (one thread only) and
under-subscribed execution on the platform? ---------
What percentage of time (approximately) was spent in full parallel execution? ----------

19

What is this view telling you?
2. Select the “Threads View” by clicking on that button @
This view shows all the threads in the applications that were active in this critical path.
How many total threads were used during the execution of this application?
Can you tell if there is some performance problem inherent in the application?
Yes No
If so, what problem is it? If not, why not?
3. Select “Objects View” [by clicking on that button.
Are there any synchronization objects that account for a significant portion of the critical path
time spent in serial or under-subscribed impact time? If so, which one(s)?
4. Select the “Timeline” tab to bring up the Timeline View.
What is the most striking feature that you notice from this data? Can you tell if there is some
performance problem inherent in the application from this view?
Yes No
If so, what would you suggest be done to correct this problem?

Finding Load Balance Issues

The application used for this lab is a version of the potential energy physics simulation that
employs a pool of threads, rather than creating and terminating a new set of threads for each
time-step. Threads are controlled by a pair of events that signal threads to start and also signal the
main thread when threaded execution has completed. Even though the loop iterations over the
particles has been divided equally between threads, there is still a load balance issue with this
code.

Build and Run Potential Threaded Program

1. With Windows Explorer*, open the folder D:\classfiles\ThreadProfiler\Potential Lab 2\.

2. Double-click the Potential Lab 2.sIn icon to start Microsoft Visual Studio.

3. Notice in the source code, the definition and initialization of the two events (bSignal and
eSignal). Also, notice the use of the done variable within the tPoolComputePot function. This
controls the termination of the threads when the simulation has completed.

4. Select the Release build, ensure the debug and linker options are set as needed, and build the
application.

5. Launch VTune Performance Analyzer and create a new Thread Profiler activity that will run the
executable generated from the previous step.

6. Run the application from within the Thread Profiler.

Evaluate Thread Profiler Results to Diagnose Problem

1. Look at the Critical Path view, and note that a much larger percentage of time is spent in “Serial
impact time.” The Concurrency Level profile view confirms that the majority of execution time is
spent with only one thread active. This data means that a single thread is running and actively
keeping other threads from executing, typically through some synchronization object.

2. Bring up the Objects profile view.
Can you tell if there is one object that has been involved with the Serial Impact Time? If so,
which one?

20

Is this object protecting access to data?

If so, can the application and data access patterns be modified to reduce the amount of time spent

by threads “holding” this synchronization object?

Note: Since the synchronization object (eSignal) is used to signal when the threaded

portion of the computations are completed, and not to protect data, the main thread is the

only one “impacted.” This impact is necessary to ensure the correct execution of the
application. Thus, modifications to the data will not affect this situation.

3. If the problem is not with data-protecting synchronization, the cause may be within the threads
themselves. Bring up the Threads profile view. Can you tell if one or more threads were
involved in the “Serial impact time” from the critical path? If so, which ones?

4. Compare the Lifetime and Active time of each of the tpoolComuptePot (worker) threads.

Thread 2 Lifetime: Thread 2 Active time:

Thread 3 Lifetime: Thread 3 Active time:

What does this tell you about the application’s threaded execution?
Should we be concerned with the Serial cruise time within Thread 1?

Fixing the Performance Issue

Note: The difference in active times of the worker threads indicates that there is a load

imbalance between the amounts of computation assignhed to these threads. You will need to

reconfigure how work is assigned to each thread, in order to achieve a more balanced

amount of work between the worker threads.

1. Bring up the source code within the Microsoft Visual Studio window.

2. Notice that the first loop within the main routine statically divides up the particle iterations based

on the number of worker threads that will be created within the thread pool.

In the computePot routine, each thread uses the stored boundaries indexed by the thread’s

assigned identification number (tid), to fix the start and end range of particles to be used. However,

the inner loop within this routine uses the outer index within the exit condition. Thus, the larger the

particle number used in the outer loop, more iterations of the inner loop will be executed. This is

done so that each pair of particles contributes only once to the potential energy calculation.

There are two obvious ways to fix this load imbalance:

A. Because the computation for each pair of particles considered will be equivalent, modify the
code to:

1. find the number of such computations that will be done ((N**2)/2 - N)

2. divide this by the number of threads being used

3. compute groupings of particles that will yield the closest set of computations calculated

in the previous step, and

4. statically set the bounds array entries to create these groupings to be assigned to

threads.

B. Use a more dynamic assignment of particles to threads. For example, rather than assigning

consecutive groups of particles, as in the original version, have each thread, starting with the

particle indexed by the thread id tid, compute all particles whose particle number differ by the

number of threads. For example, when using two threads, one thread handles the even-numbered

particles while the other thread handles the odd-numbered particles.

The first scheme involves considerable amount of code modifications, but will still be scalable for

different numbers of threads and/or number of particles, and still achieve a good load balance. The

21

second scheme will achieve similar results and scalability, but requires much less code
modifications.

3. Modify the physics simulation code to achieve a better load balance between the worker threads.
You can use one of the solutions outlined above, or use one of your own design.

4. Re-run your modified code through the Thread Profiler to see if you have achieved the results
you desired.

Note: After making such changes, you would normally run the modified application through
the Thread Checker to ensure that no new threading errors had been introduced. If you have
achieved sufficient load balance from the modified code and have the time, you should

test the application with the Thread Checker.

Finding Synchronization Contention Issues

The application computes an approximation to the value of the constant Pi using the “midpoint
(rectangle) rule” of numerical integration. The worker threads that are created compute the area of
rectangles using the function value at selected points as the height of a rectangle. The results of
each height computation are stored into a global sum. Access to this global variable is (correctly)
protected by a CRITICAL_SECTION object. Even though the number of rectangle-area
computations has been divided equally between threads, there is still a performance issue with this
code.

Build & Run Threaded Numerical Integration Program

1. With Windows Explorer*, open the folder

D:\classfiles\ThreadProfiler\Numerical Integration\.

2. Double-click the TP_Lab3.sIn icon to start Microsoft Visual Studio

3. Select the Release build, ensure the debug and linker options are set as needed, and build the
application.

4. Launch VTune Performance Analyzer and create a new Thread Profiler activity that will run the
executable generated from the previous step.

5. Run the application from within the Thread Profiler.

Evaluate Results to Diagnose Problem

On completion of the run, you should see the Critical Path view. There is a large portion of the
execution along the critical path that was spent in “Serial impact time.” If there is a way to eliminate
or reduce this, the application will run faster. Also, there is quite a bit of time being spent in
threading overhead.

1. Double click on the critical path bar to go to the profile view. If the Concurrency Level view does

oL

not open as the default, click on the “Concurrency Level” button in the toolbar.

What is this view telling you?

2. Select the “Threads View” [E by clicking on that button. This view shows all the threads in the
applications and how those were active in this critical path. Is there a load imbalance between
the worker threads?

3. Select “Objects View” fee by clicking on button. This view will show that the application is
impacted by one Critical Section object where all of the accumulated impact is present.

4. Select a second level grouping in the Objects view by clicking on that button and choosing

22

“Thread” [2 to bring up the view shown in Figure 7.2. Both worker threads are impacted by the
same Critical Section Object. The next few steps show how to get from the impacting object to

the source line.

Figure 7.2. Second Level Grouping under Objects View

= RERl [R oaR 3| %

Both worker threads are impacted by the same Critical Section Object. The next few steps

show how to get from the impacting object to the source line.

1. Select one of the Threads bar impacted by the critical section object to see the pop-up menu
shown in Figure 7.3.

2. Select “Filter and Group by” drop down menu and in the drop-down, select “Source All”.

This brings up a screen shown in Figure 7.4.

Figure 7.3. Filtering by Object and Grouping by Source Code Locations Figure 7.4. Filtered Profile View

= Bl [ke opal % [PRERRE [e 0ok %

3

P

3. Right click on the bar graph and select “Transition Source View” in the selection. This above
operation will take you to the source location where the object is used and shows the transition
information.

Using the Timeline View for Analysis

1. Return to the Profile view. Remove the filtering by clicking on the <funnelX> icon. (Though it is

not necessary, you may also want to go back to a simple display by clicking the <Obar> icon.)

2. Click on the Timeline tab to bring up the Timeline view. If you did not have “Transitions’ set when
the application was run, modify the collectors. Re-run the application in the Thread Profiler; click
on the Timeline tab after results are displayed.

3. Zoom (click and drag) into a portion near the middle of the timeline that has multiple threads
running. Continue zooming in until you have a view similar to the one shown in Figure 7.5.

23

Figure 7.5. Timeline View (Zoomed)

]

.

= AAANT
=i

1: Thread

2: Thread

3: Thread

0167 01572 0154 01576 01578 0158 01682 01584 01585 01588
Time [seconds)

“ il L
Ciitical Paths | Profile Timeline

What is this view telling you?
4. Hold the pointer over one of the red impact bars. The tooltip box details which synchronization
object was involved and identifies the threads involved.

5. Hold the pointer on one of the transition lines. The tooltip popup details the synchronization
object, the threads involved and the source lines with the transition of the critical path from one
thread to another.

6. Right click on a transition line. Choose “Transition Source View” from the menu popup to open a
Transition Source window.

This will show you the source code location where the critical path transitioned from one thread to

another (Out).

Fixing the Performance Issue

The repeated access and contention on the CRITICAL_SECTION object causes a large part of the

run to be executed in serial. If more worker threads were used, the problem would be worse, as

more threads would sit idle waiting to acquire the synchronization object.

1. Modify the numerical integration code to achieve better performance.
To fix the contention problem, declare a variable in the PiThreadFunc function to collect the
partial sums of the rectangle areas within each thread. A copy of this variable will be local to
each thread and not require synchronization. Once a thread has completed calculating all the
assigned rectangles, the thread should update the global sum with the local partial sum. This
update should be protected. Thus, the protected global update is done once for every thread,
rather than once for every rectangle computation.

2. Re-run the updated application through the Thread Profiler to ensure that performance has
improved.

Comparing Performance Runs

1. Click on the “Critical Paths” tab.

2. Drag the original Thread Profiler results of this application from the Tuning Browser to compare
with the final results you achieved.

3. Highlight both bars (CTRL+click on bars not highlighted).

4. Examine the results displayed in the “Profile” and Timeline” tabs.

24

Is there a noticeable improvement from the original execution performance?

Review Questions

1. Is oversubscription of processor resources by active threads a severe performance problem?
Yes No
2. Combining views within the Profile View can give you more information than what is discernible
from single views. What can you tell by combining the Objects and Threads views in the Thread
Profiler?
3. Was the Timeline view useful?
4. Can applications instrumented for Timeline view be used in performance comparisons?
Yes No

25

