

* Other names and brands may be claimed as the property of others. Copyright © Intel Corporation, 2006. All rights reserved.

Windows* Threading APIs Cheat Sheets 1

Visit MSDN* at http://msdn.microsoft.com/ for complete details on API. This summary is for your convenience only. 2
 3

HANDLE hThread = 4
 CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes, 5

DWORD dwStackSize, 6
LPTHREAD_START_ROUTINE lpStartAddress, 7
LPVOID lpParameter, 8
DWORD dwCreationFlags, 9
LPDWORD lpThreadId); 10

Notes 11
lpThreadAttribute 12

This is optional security for child processes. It can be NULL. 13
dwStackSize 14

This is stack size in bytes. It can be 0, which means use default (usually 1 megabyte). 15
lpStartAddress 16

This is a globally visible function declared DWORD WINAPI. This is the function for the thread to 17
begin execution. 18

lpParameter 19
This is a pointer to the one parameter for “lpStartAddress” function. Use a pointer to a 20
structure to pass multiple parameters. 21

dwCreationFlags 22
This creates a thread and starts or suspends it. Use 0 to start; otherwise use 23
CREATE_SUSPENDED. 24

lpThreadId 25
This is an output parameter and returns a unique (across the system) integer for the thread. It can 26
be NULL. 27

Returns 28
HANDLE to a thread, or NULL if function fails. The HANDLE is for a kernel object that is a thread. 29

Also see: 30
VOID ExitThread(DWORD dwExitCode); // exit (return from) calling thread 31
BOOL GetExitCodeThread(HANDLE hThread, 32

 LPDWORD lpExitCode); // call to get code 33

Example 34
#include <windows.h> // required include file 35
 36
DWORD WINAPI MyThreadStart(LPVOID p) 37
{ // Do some work in parallel here. 38
 // Signal thread exit: 39
 return(0); // same as ExitThread(0); 40
} 41
main() 42
{ DWORD dwThreadRet; 43
 HANDLE hThread = 44
 CreateThread(NULL, 0, // security, stackSize 45
 MyThreadStart, NULL, // threadFunc, threadParams 46
 0, NULL); // runFlag, threadIdOut 47
 48
 // main continues after CreateThread() on its own thread. 49
} 50

Windows* Threading APIs Cheat Sheets

2 Copyright © Intel Corporation, 2006. All rights reserved.

 1

 2

This page intentionally left blank. 3
 4
 5

Windows* Threading APIs Cheat Sheets

3 Copyright © Intel Corporation, 2006. All rights reserved.

Visit MSDN* at http://msdn.microsoft.com/ for complete details on API. This summary is for your convenience only. 1
 2
DWORD dwRet = 3
 WaitForMultipleObjects(DWORD nCount, 4
 CONST HANDLE* lpHandles, 5

BOOL bWaitAll, 6
DWORD dwMilliseconds); 7
 8

Notes 9
nCount 10

This is the number of handles in the lpHandles array. 11
lpHandles 12

This is a pointer to an array of handles. 13
bWaitAll 14

If this is TRUE, waits for all objects in lpHandles array to be signaled. If FALSE, waits for any 15
one handle from the array to be signaled and the return value is the array index. 16

dwMilliseconds 17
This is the time-out interval in milliseconds. It can be INFINITE for no time-out. 18

Returns: 19
WAIT_FAILED if the function failed. See MSDN* for more details. 20

Also see: 21
DWORD WaitForSingleObject(HANDLE hHandle, 22

 DWORD dwMilliseconds); 23
 24
 25

Example 26
#include <windows.h> // required include file 27
 28
main() 29
{ 30
 HANDLE hThreads[2] ; 31
 for (int i=0; i<2; i++) 32
 { 33
 hThread[i] = CreateThread(NULL,0, MyThreadStart,NULL, 0,NULL); 34
 } 35
 // Wait 1000 milliseconds (1 second) maximum for both threads 36
 // to complete or signal their exit: 37
 dwRet = WaitForMultipleObjects(2, hThreads, TRUE, 1000); 38
 39
 40
 HANDLE hMoreThreads[4] ; 41
 for (int j=0; j<4; j++) 42
 { 43
 hMoreThreads[j] = CreateThread(NULL,0, MyThreadStart,NULL, 0,NULL); 44
 } 45
 // Wait forever for all 4 threads to signal their exit: 46
 dwRet = WaitForMultipleObjects(4, hMoreThreads, TRUE, INFINITE); 47
} 48

Windows* Threading APIs Cheat Sheets

4 Copyright © Intel Corporation, 2006. All rights reserved.

 1
 2
 3

This page intentionally left blank. 4
 5
 6

Windows* Threading APIs Cheat Sheets

5 Copyright © Intel Corporation, 2006. All rights reserved.

Visit MSDN* at http://msdn.microsoft.com/ for complete details on API. This summary is for your convenience only. 1
 2
CRITICAL_SECTION csLock; 3
VOID InitializeCriticalSection (LPCRITICAL_SECTION csLock); 4
VOID DeleteCriticalSection (LPCRITICAL_SECTION csLock); 5
VOID EnterCriticalSection (LPCRITICAL_SECTION csLock); 6
VOID LeaveCriticalSection (LPCRITICAL_SECTION csLock); 7

Notes 8
csLock 9

This is a lightweight, user-space variable to be used like a mutex (MUTual EXclusion) or lock. 10
InitializeCriticalSection() 11

This function initializes the CRITICAL_SECTION variable. This function must be called before 12
the CRITICAL_SECTION variable can be used. 13

DeleteCriticalSection() 14
This function destroys all resources used by the CRITICAL_SECTION variable. This function is 15
called when the CRITICAL_SECTION variable is no longer needed. 16

EnterCriticalSection() 17
This function attempts to acquire the CRITICAL_SECTION variable. If another thread has 18
already acquired the lock, this function will block; once the CRITICAL_SECTION variable has 19
been acquired, the function returns. 20

LeaveCriticalSection() 21
This function releases the lock, and returns immediately. The thread that releases the lock must 22
be the same thread that obtained (acquired) the lock. 23

Example 24
#include <windows.h> 25
 26
int MyShared = 0; // global shared by all threads 27
CRITICAL_SECTION MyLock; // shared lock for exclusive access to shared data 28
 29
DWORD WINAPI MyThreadStart(LPVOID p) 30
{ 31
 int MyPrivate = DoBigComputation(); // local to each thread 32
 33
 EnterCriticalSection(&MyLock); 34
 // The shared global variable (MyShared) is updated one thread at a 35
 // time from each thread’s own local, private variable (MyPrivate). 36
 MyShared += MyPrivate; 37
 LeaveCriticalSection(&MyLock); 38
 39
 return(0); 40
} 41
int main() 42
{ InitializeCriticalSection(&MyLock); 43
 44
 // Create N threads here all mapped to MyThreadStart() function. 45
 // Wait for all threads to signal completion . . . 46
 47
 DeleteCriticalSection(&MyLock); 48
 return MyShared; 49
} 50

Windows* Threading APIs Cheat Sheets

6 Copyright © Intel Corporation, 2006. All rights reserved.

 1
 2

 3
This page intentionally left blank. 4

Windows* Threading APIs Cheat Sheets

7 Copyright © Intel Corporation, 2006. All rights reserved.

Visit MSDN* at http://msdn.microsoft.com/ for complete details on API. This summary is for your convenience only. 1
 2
HANDLE hSemaphore = 3
 CreateSemaphore(LPSECURITY_ATTRIBUTES lpsa, 4

 LONG lSemInitial, 5
 LONG lSemMax, 6
 LPCSTR lpSemName); 7

 8
BOOL ReleaseSemaphore(HANDLE hSemaphore, 9

 LONG cReleaseCount, 10
 LPLONG lpPreviousCount); 11

 12

Notes 13
hSemaphore 14

This is a handle for the semaphore object. 15
CreateSemaphore() 16

This function initializes the semaphore object. This function must be called before the semaphore 17
can be used. 18

lpsa 19
This is optional security for the semaphore. It can be NULL. 20

lSemInitial 21
This is the initial value of the semaphore upon creation. This value must be greater than or equal 22
to zero and less than or equal to lSemMax. 23

lSemMax 24
This is the maximum value the semaphore. This value must be a positive integer. 25

lpSemName 26
This is a pointer to a NULL terminated string that specifies the name of the semaphore. Use 27
NULL is no name is required. Named semaphores can be accessed by threads in other 28
processes. 29

ReleaseSemaphore() 30
This function increments the semaphore object by cReleaseCount and returns the previous 31
semaphore count prior to increment. 32

cReleaseCount 33
This is the amount to increment the semaphore upon release. This value must be greater than 34
zero. 35

lpPreviousCount 36
This returns the value of the semaphore prior to increment. If the value is not needed, NULL can 37
be used. 38

Windows* Threading APIs Cheat Sheets

8 Copyright © Intel Corporation, 2006. All rights reserved.

Example 1
#include <windows.h> 2
#define SLOTS_IN_LIST 10 3
long numListElements = 0; 4
 5
HANDLE MySem; // shared semaphore for counting open list slots 6
 7
DWORD WINAPI MyThreadStart(LPVOID p) 8
{ 9
 int MyPrivate; 10
 while (!bDone) { 11
 MyPrivate = DoSomeComputation(); // local to each thread 12
 13
 WaitForSingleObject(&MySem, INFINITE); // space on list? 14
 15
 // Add MyPrivate to list 16
 InterlockedIncrement(&numListElements); // one more item on list 17
 18
 if (numListElements == SLOTS_IN_LIST) { 19
 // Empty the list 20
 numListElements = 0; 21
 ReleaseSemaphore(MySem, 10, NULL); // all list slots available 22
 } 23
 } 24
 return(0); 25
} 26
 27
int main() 28
{ mySem = CreateSempahore(NULL, 0, SLOTS_IN_LIST, NULL); 29
 30
 // Create list structure with SLOTS_IN_LIST elements available 31
 32
 // Create N threads here all mapped to MyThreadStart() function. 33
 // Wait for all threads to signal completion . . . 34
 35
} 36

Windows* Threading APIs Cheat Sheets

9 Copyright © Intel Corporation, 2006. All rights reserved.

Visit MSDN* at http://msdn.microsoft.com/ for complete details on API. This summary is for your convenience only. 1
 2
HANDLE hEvent = 3
 CreateEvent(LPSECURITY_ATTRIBUTES lpea, 4

BOOL bManualReset, 5
BOOL bInitialState, 6
LPCSTR lpSemName); 7

 8
BOOL SetEvent (HANDLE hEvent); 9
 10
BOOL ResetEvent(HANDLE hEvent); 11

 12
BOOL PulseEvent(HANDLE hEvent); 13
 14

Notes 15
hEvent 16

This is a handle for the event object. 17
CreateEvent() 18

This function initializes the event object. This function must be called before the event can be 19
used. 20

lpea 21
This is optional security for the event. It can be NULL. 22

bManualReset 23
This boolean sets the type of the event. The created event is a Manual Reset event if 24
bManualReset is TRUE; it is an Auto-Reset event if the parameter is FALSE. 25

bInitialState 26
This Boolean determines that initial signal state of the event. The event is created in a Signaled 27
state if bInitialState is TRUE; it is created in a nonsignaled state if the parameter is FALSE. 28

SetEvent() 29
For a Manual Reset event, this function will signal the event and the event will remain in the 30
signaled state until ResetEvent is called. For an Auto-Reset event, this function will signal the 31
event and leave the event signaled until one thread has waited and released on the event; the 32
event will be reset. 33

ResetEvent() 34
For a Manual Reset event, this function will reset the event to the nonsignaled state. For an 35
Auto-Reset event, this function will reset the event to the nonsignaled state (this is not typically 36
done since the event will be reset automatically). 37

PulseEvent() 38
For a Manual Reset event, this function will signal the event and release all threads waiting on the 39
event; the event will be reset to the nonsignaled state. For an Auto-Reset event, this function will 40
signal the event and release only one thread, if such a thread is waiting; the event will be reset. If 41
no threads are waiting on the event, the signal is “lost.” 42

Windows* Threading APIs Cheat Sheets

10 Copyright © Intel Corporation, 2006. All rights reserved.

Example 1
#include <windows.h> 2
 3
HANDLE hEvents[2]; // 0 is found, 1 is not found 4
 5
DWORD WINAPI threadFunc(LPVOID arg) { 6
 BOOL bFound = bigFind() ; 7
 8
 if (bFound) 9
 { 10
 SetEvent(hEvent[0]); // signal data was found 11
 bigFound() ; 12
 } 13
 else 14
 SetEvent(hEvent[1]); // signal data was not found 15
 16
 moreBigStuff() ; 17
 return 0; 18
} 19
 20
int main() 21
{ . . . 22
 hEvent[0] = CreateEvent(NULL, FALSE, FALSE, NULL); // manual reset 23
 hEvent[1] = CreateEvent(NULL, FALSE, FALSE, NULL); // manual reset 24
 25
/* Create thread and do some other work while thread executes search */ 26
 27
 DWORD waitRet = WaitForMultipleObjects(2, hEvent, FALSE, INFINITE); 28
 29
 switch(waitRet) { 30
 case WAIT_OBJECT_0: // found event signaled 31
 printf("found it!\n"); 32
 ResetEvent(hEvent[0]); // prepare for next search 33
 break; 34
 case WAIT_OBJECT_0+1: // not found event signaled 35
 printf("not found\n"); 36
 ResetEvent(hEvent[1]); // prepare for next search 37
 break ; 38
 default: 39
 printf("wait error: ret %u\n", waitRet); 40
 break ; 41
 } 42
. . . 43
 } 44

 45
 46

