== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Multi-core Architecture and
Programming

Yang Quansheng(43 4 p)
http://www.njyangqs.com/

School of Computer Science & Engineering
Southeast University

1 http://www.njyangqgs.com/

Process, threads and Parallet-»~=«=
Programming

= Content

¢ Concepts of Process

¢ What is a threads

¢ Designing for threads

¢ Mutual Exclusion and Synchronization
¢ Common Parallel Programming Problems

2 http://www.njyanggs.com/

Concepts of Process

= A running of a program
= A quadruple (P,C,D,S)
¢ P-Program
¢ C-Control state

¢ D-Data
¢ S-Executing state

=« Characteristics

¢ Own the resource
¢ Be scheduled by OS

3

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

http://www.njyangqgs.com/

=9

di ot (== g 20y
L I=) =,

)

Concepts of Process

« Status of Process

Ready

Suspend

Southeast Univergitii & School of Computer_ Science & inginl_eering 4 http:llwww‘njyangqs_coml

W _-H_ = :

Concepts of Process

= Communication among the process
¢ Mode

- com’rfun]fuj"/
- synchronization
- congregate
¢ In share memory mode, communication can

realized via read/write the share buffer
supported by OS

¢ In distributed memory mode, communication
depend on the network

5 http://www.njyangqgs.com/

Process, threads and Parallet-»~=«=
Programming

= Content

¢ Concepts of Process

¢ What is a threads

¢ Designing for threads

¢ Mutual Exclusion and Synchronization
¢ Common Parallel Programming Problems

6 http://www.njyanggs.com/

What iIs a threads

=« Processes and Threads Stack
¢ Modern operating systems thread
load programs as processes main()
+ Resource holder
- EXCCU"'iOﬂ Stack Stack

¢ A process starts executingat, ., .. .
its entry point as a thread

¢ Threads can create other
threads within the process Code segment

- Each thread gets its own stack Data segment

¢ All threads within a process
share code & data segments

/ http://www.njyanggs.com/

Southeast Universit Sh ol of Computer Science & Engineer ing
B (o7 e

= e T
=S LI =) FhR TR,

What is a threads

« Thread is the light weight process. It is
the basic unit can be scheduled by OS.

CODE DATA FILE CODE DATA FILE

REG REG REG
STACK| STACK sTACK

HENgE

thread thread

REG STACK

8 http://www.njyangqs.com/

= hde il e = g= 2o
=2 AP, O] =) i cE,

What iIs a threads
= 1he level of threads

¢ User threads
- Threads in applications
-Created and managed by threading APIL
- OpenMP
* Pthreads
- Windows thread API
¢ Kernel threads

- Different kernel threads within process can
ran in different CPU or core

¢ Hardware threads
+SMT: Hyper-Threading

niversi ‘:; = “ﬁ o —P‘% " I"Eﬁﬂg{ 9 http:”WWW-njyangqs‘coml

What is a threads

= Mapping mode from thread to processor

¢ One thread to one processor
- Preemptive multi-threading
- Linux, Windows XP

¢ M threads to one processor
- Cooperative multi-threading

- Need a thread scheduler to select one thread
into processor

¢ M threads to N processors

10 http://www.njyangqgs.com/

Process, threads and Parallet-»~=«=
Programming

= Content

¢ Concepts of Process

¢ What is a threads

¢ Designing for threads

¢ Mutual Exclusion and Synchronization
¢ Common Parallel Programming Problems

11 http://www.njyanggs.com/

== e i hr = 4= s
=2 AP, O] =) i cE,

Designing for threads

= Threading for Functionality or Performance?

¢ Threading for Functionality

- Assign threads to separate functions done by
application

- Easiest method since overlap is unlikely

«Example: Building a house

- Bricklayer, carpenter, roofer, plumber,...
¢ Threading for Performance
- Increase the performance of computations

- Thread in order to improve turnaround or
throughput

@Examples Searching for pieces of Skylab
' .areg. 1o be SEamheHttp:Ilwww.njyamgqs.coml

L
- =,
! \’ /] r——w

\
N
3

Designing for threads

= Threading for turnaround or throughput
¢ Turnaround

~Complete single task in the smallest
armount of time

~Example: Setting a dinner table
* One to put down plates
- One to fold and place napkins

* One to place utensils
- Spoons, knives, forks
- One to place glasses

13 http://www.njyangqgs.com/

Designing for threads

= Threading for turnaround or throughput

¢ Throughput

- Complete the most tasks in a fixed amount
of time

- Example: Seiting up banguet tables
> Multiple waiters each do separate tables

- Specialized waiters for plates, glasses,
utensils, etc

14 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 :—_w/,.f' sen)
=2 BLIT =) i TE

Designing for threads

= Task Decomposition
= Data Decomposition
= Data Flow Decomposition

Decomposition Design Comments

Different activities assigned

Task to different threads

Common in GUI apps

Common in audio
processing, imaging,
and in scientific
programming

One thread's output is the Special care is needed

Data Flow input fo a second thread to eliminate startup
So and shutdown latencies

C 4 A |

Multiple thread performing the
Data same operation but on
different blocks of data

n/

= Sbe il he = 2= s2o)
=2 AP, O] =) i cE,

Designing for threads
= Benefit of multi-threads

¢ Create a thread cost less than process

¢ Switching between threads cost less than
that between process

¢ Take full advantage of multi-processor and
multi-core

¢ Sharing data through memory more
efficient than message-passing

=« Risks

¢ Increases complexity of application

¢ Difficult to debug (data races, deadlocks,

etc.)
ast University £..:% School of C
V + o

c omputer Science & Engineering
: . =
it &5 OH

16 http://www.njyangqgs.com/

Process, threads and Parallet-»~=«=
Programming

= Content

¢ Concepts of Process

¢ What is a threads

¢ Designing for threads

¢ Mutual Exclusion and Synchronization
¢ Common Parallel Programming Problems

17 http://www.njyanggs.com/

_Synchronization

= Race Conditions
¢ Threads “race” against each other for
resources

«Execution order is assumed but cannot be
guaranteed

¢ Storage conflict is most common

- Concurrent access of same memory location
by multiple threads

* At least one thread is writing =
o Example: Musical Chairs Nk

()
-
) (=)

/|

\

18 http://www.njyangqgs.com/

Mutual Exclusion and e
Synchronization

=« Mutual Exclusion

¢ Critical Region

= Portion of code that accesses (reads &
writes) shared variables

¢ Mutual Exclusion

- Program logic to enforce single thread
access Yo critical region

- Enables correct programming structures for
avoiding race conditions

¢ Example: Safe Deposit box
- Attendants ensure mutual exclusion

niversi School of Computer Science & Engineering 1 . =
o i e e 9 http://www.njyanggs.com/

Mutual Exclusion and e
Synchronization

= Synchronization
¢ Synchronization objects used to enforce
mutual exclusion

-Lock, semaphore, critical section, event,
condition variable, atomic

+0One thread “holds” sync. object; other
threads must wait

- When done, holding thread releases object:;
some waiting thread given object

¢ Example: Library book
-~ One patron has book checked out
- Others must wait for book to return

niversi School of Computer Science & Engineering 2 . =
o i e e 0 http://www.njyanggs.com/

Synchronization

= Barrier Synchronization
¢ Threads pause at execution point
- Threads waiting are idle; overhead
¢ When all threads arrive, all are released
¢ Example: Race starting line

Synchronization

=« Deadlock

¢ Deadlock occurs whenever a thread is
blocked waiting on a resource of another
thread that will never be released.

¢ According to the circumstances, different
deadlocks can occur:
- Self-deadlock
+Recursive deadlock
- Lock-ordering deadlock

22 http://www.njyangqgs.com/

Synchronization

« Starvation

¢ Starvation occurs whenever a thread is
waiting on a resource of another thread
that will never available to it in spite of be
released. If the waiting state is everlasting,
it means starve to death.

¢ Example:

+A large file in a printing system that small
file first, maybe wait printer for ever.

= Livelock
¢ Starvation occurs during busy waiting

23 http://www.njyangqgs.com/

Mutual Exclusion and e
Synchronization

= Synchronization Primitives

¢ Semaphore

- Sermaphore can be represented by an integer
and can be bounded by tweo basic atomic
operations:

-P: proberen, which means test

+V: verhogen, which means increment

P(mutex);
Critical section;
V(mutex);

24 http://www.njyanggs.com/

nlversit. cccccc f Computer Science & Engineering
rl‘ﬁﬁlﬂ% %Iﬁ%ﬁ

s
L =,
4 \ - lr——w

\b
N
3

Mutual Exclusion and
“Synchronization

= Synchronization Primitives

¢ Locks

-Locks are similar to semaphores except that
a single thread handles a lock at one
instance.

- Two basic atomic operations get performed
on a lock:

- Acquire(): Atomically waits for the lock state
to be unlocked and sets the lock state to lock.

- Release(): Atomically changes the lock state
form locked to unlocked

25 http://www.njyangqgs.com/

Mutual Exclusion and S i
Synchronization

= Synchronization Primitives

¢ Condition Variables

« Condition variables are also based o

° o \ 0] , 0 , e * 2

Dijkstra’'s semaphore semantics, wit
exception that no stored value is associated
WiTh The operation.

* Wait: Atomically releases the lock and waits,
where wait returns the lock been acquired
again.

- Signal: Enables one of the waiting threads to

run, where signal returns the lock is still
acquired.

* Broadcast: Enables all of the waiting threads
to run, where broadcast returns the lock is
still acquired.

Southeast University 4. School of Computer Science & Engineering
e (VoY)y e A

26 http://www.njyangqgs.com/

Process, threads and Parallet-»~=«=
Programming

= Content

¢ Concepts of Process

¢ What is a threads

¢ Designing for threads

¢ Mutual Exclusion and Synchronization
¢ Common Parallel Programming Problems

21 http://www.njyanggs.com/

Common Parallel Programming
Problems

Too Many Threads?

¢ Degrade with too many threads

¢ The impact comes in two ways:

- The overhead of starting and terminating
threads swamps the useful work

- Overhead from having to share fixed
nardware resources

¢ Useful practices
-Let OpenMP do the work
~Use a thread pool
- Work stealing

28 http://www.njyanggs.com/

niversit School of Computer Science & Engineering
A BN R % 5 TR X%

Common Parallel Programming

Problems

= Synchronization
¢ Data Races

¢ Deadlocks

¢ Live Locks

niversity £..:5 School of Computer Science & Engineering
. 4 -

29

== 20
=) SMITE

http://www.njyanggs.com/

Common Parallel Programmirig™""
Problems

Heavily Contended Locks

¢ Priority inversion

A low-priority thread blocks a high-priority
thread from running

¢ Solutions
- Replicate the resource

- Partitioning the resource and using a
separate lock to protect each partition

- Fine-grained locking

30 http://www.njyanggs.com/

nlversit. cccccc f Computer Science & Engineering
rl‘ﬁﬁlﬂ% %Iﬁ%ﬁ

Common Parallel S i
Programming Problems

= Non-blocking Algorithms

¢ Three different non-blocking auarantees
- Obstruction freedom
-Lock freedom
- Wait freedom

¢ ABA problem

¢ Cache line Ping-ponging

¢ Memory reclamation problem

31 http://www.njyangqgs.com/

J

Common Parallel S
Programming Problems

= Memory Issues

¢ Bandwidth

-~Pack data more tightly

- Move data less frequently between cores
¢ Working in the cache

- Minimizing data movement
* Cache-oblivious blocking

32 http://www.njyangqgs.com/

Common Parallel 2 5 851 S TR
Programming Problems

=« Cache-related Issues

¢ False sharing
- Cache line ping ponging
-Lower Performance

¢ Memory consistency

¢ Intel Architecture
+IA-32 Architecture
- Itanium Architecture

33 http://www.njyangqgs.com/

	Multi-core Architecture and Programming
	Process, threads and Parallel Programming
	Concepts of Process
	Concepts of Process
	Concepts of Process
	Process, threads and Parallel Programming
	What is a threads
	What is a threads
	What is a threads
	What is a threads
	Process, threads and Parallel Programming
	Designing for threads
	Designing for threads
	Designing for threads
	Designing for threads
	Designing for threads
	Process, threads and Parallel Programming
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Mutual Exclusion and Synchronization
	Process, threads and Parallel Programming
	Common Parallel Programming Problems
	Common Parallel Programming Problems
	Common Parallel Programming Problems
	Common Parallel Programming Problems
	Common Parallel Programming Problems
	Common Parallel Programming Problems

