== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Multi-core Architecture and
Programming

Yang Quansheng(s4 %)
http://www.njyangqs.com/

School of Computer Science & Engineering
Southeast University

1 http://www.njyangqgs.com/

Programming with MPI

= Content
¢ What is MPI
¢ Basic of programming with MPI
¢ Collective Communication

School of Computer Sc

) P TSR TR 2 http://www.njyanggs.com/

= Sbe il he = 2= s2o)
=2 AP, O] =) i cE,

What is MPI

= MPI is a message-passing application
programmer interface .

¢ The MPI is a language-independent
communications protocol used to program
parallel computers.

¢ MPI's goals are high performance,
scalability, and portability.

¢ It has become the de facto standard for
communication among processes that model a
parallel program running on a distributed
memory system :

3 http://www.njyangqgs.com/

=22 dhebe b S s o=, s2n)
=2 AP, O] =) i cE,

What is MPI

= MPTI is a message-passing application
programmer interface .

¢ The principal MPI-1 model has no shared
memory concept, and MPI-2 has only a
limited distributed shared memory concept.

¢ MPI includes point-to-point message passin
and collective (global) operations, all scope
to a user-specified group of processes.

¢ Every process has its own stack and code
segment, data transfer among the
processes can be done by calling the
communication function explicitly.

ool of Computer Science & Engineerin - =
; T 4 http://www.njyanggs.com/

What is MPI

= MPI is a message-passing application
programmer interface .
¢ MPI was designed for high performance on

both massively parallel machines and on
workstation clusters

¢ MPI is widely available, with both free
available and vendor-supplied
implementations

-Open Source: MPICH, LAM MPL
=Non Open Source: INTEL MPI

5 http://www.njyangqgs.com/

What is MPI

= Types of MPI program
¢ SPMD (Single Program Multiple Data)

process process process
— —) — —
ﬂ Load ﬂ Loa ﬂ ﬂ

HEEEEEEEEEEN HEEEEEEEEEN N EEEEEEENEEEN EEEEEEEEEEN
prog_ @ Proces Process
YVYVVY YVVY \ 4 JV \ 4
HEREEERREEE HEREEEEEEN
Gather ‘
YYVYVVVVVVYYYY

e @ 6 http:/Mww.njyanggs.com/

What is MPI
= Types of MPI

@mpmp PO | Nodel
program Master/Worker a< E E § e==x} | Node 2
* MPMD N o o] Noves
(MU'*ip'g (b) MPMD prog a—* —> C—> C——>| Nodel
Pr'ogram Coupled prog b— =» > | Node 2
Multiple Data) reec (=R = S Nodes
prog_ prog_ prog_
na 0] ¢
(c) MPMD _/ .
S li
treamline 4 ;§,—>
U 14

Node Node 2 Node
1 3

! http://www.njyanggs.com/

School of Computer Science & Engineering

Southeast Universiti

Programming with MPI

= Content
¢ What is MPI
¢ Basic of programming with MPI
¢ Collective Communication

Southeast Universiti ho;! of Computer Science & Engineering 8 http:llwww‘lnjyangqs‘coml

== e i hr = 4= s
=2 AP, O] =) i cE,

Basic of programming with MPI

= Four basic functions
¢ int MPI_Init(int *arge, char ***argv);
= MPI_Init initial the MPI execution environment.
¢ int MPI_Finalize(void);
- Terminates MPL execution environment.

¢ int MPI_Comm_rank(MPI_Comm comm, int
*rank).

- Determines the rank of the calling process in
the communicator

¢ int MPI_Comm_size(MPI_Comm comm, int *size);

- Determines the size of the group associated
with a communicator

niversi . h C 1’ tS Lj C& g1eri 9 http://WWW.njyangqs'coml

== =t=is :'r-_'— = =3 :—_w/,.f' sen)
=2 BLIT =) i TE

Basic of programming with MPI

M An Example Hello world from process O of 4
: : Hello world from process 1 of 4
#include <stdio.h> P

sl e Wt [Hello world from process 2 of 4
P! Hello world from process 3 of 4

int main Cint argc, char *argv[]) {
Int rank;
Int size;

MPI_Init Cargc, argv) ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &size) ;

printf C ""Hello world from process %d of %d\n*’, rank, size

MPI_Finalize O ;
returnO

Southeast Unnersity £5..:3 nool of Computer S & Engineering

ey o () R T R R R http://www.njyanggs.com/

== e i hr = 4= s
=2 AP, O] =) i cE,

Basic of programming with MPI

= Point to Point Message Passing
¢ int MPI_SEND(buf, count, datatype, dest, tag,
comm)

«Performs a blocking send to the dest process
which in the comm. The number of data in buf
which will be send is count, the type of them is

datatype.
¢ int MPI_RECV(buf,count, datatype, source, tag,
comm, status)

- Blocking receive for a message.

11 http://www.njyanggs.com/

niversit School of Computer Science & Engineering
A BN R % 5 TR X%

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Basic of programming with MPI

= Point to Point Message Passing

¢ void *buf: initial address of send/receive
buffer

¢ int count: maximum number of elements in
buffer

¢ MPI_Datatype datatype: datatype of each
buffer element

¢ int dest/source: rank of destination/source
¢ int tag: message tag
& MPI_Comm comm: communicator

& MPT Sta‘rus status status ob ect
e (& P :/limww.njyanggs.com/

== =t=is :'r-_'— = =3 :4/,.?' sen)
=2 AP, O] =) i cE,

Basic of programming with MPI

« Error treatment

¢ int MPI_Abort(MPI_Comm comm, int
errorcode),

- Terminates all MPL proces
the communicator cormy n
terminates all processes

- J”,r, 3{7)0{5)“_]‘5 B #include <mpi.h>
SER Bl int main(int argc, char *argvl])
return 170 {
invoking (NULL, NULL);
environment (MPI_COMM_WORLD, 911);

/* No further code will execute */

0);

return O;

Southeast Universitii e

http://mpi.deino.net/mpi_functions/MPI_Init.html
http://mpi.deino.net/mpi_functions/MPI_Abort.html
http://mpi.deino.net/mpi_functions/MPI_Finalize.html

Programming with MPI

= Content
¢ What is MPI
¢ Basic of programming with MPI
¢ Collective Communication

14 http://www.njyangqgs.com/

N A —)
= HZ IO =) TR

Collective Communication

= Synchronization

¢ int MPI_Barrier(MPI_Comm comm);

- Blocks the caller until all processes in the
comrmunicator have called it; that is, the
call returns at any process only after all
members of the communicator have
entered the call.

= This routine may be safely used by
multiple threads without the need for any
user-provided thread locks.

« The routine is not interrupt safe.

15 http://www.njyanggs.com/

niversi .Sh ol of Computer Science & Engineer ing
rl‘ﬁﬂﬂ% %IE% Bz

B Ad s o e FE
SO =) T,

Collective Communication

Broadcast

¢ int MPI_Bcast(void *buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm);
- Broadcasts a message from the process with

rank root to all processes of the group,
itself included.

= This routine may be safely used by multiple
threads without the need for any user-
provided thread locks.

« The routine is not interrupt safe.

16 http://www.njyanggs.com/

nlversit. cccccc f Computer Science & Engineering
rl‘ﬁﬁlﬂ% %Iﬁ%ﬁ

== e i hr = 4= s
=2 AP, O] =) i cE,

Collective Communication

=« Gather

¢ int MPI_Gather(void *sendbuf, int sendcnt,
MPI_Datatzfe sendtype, void *recvbuf, int
recvent, MPI_Datatype recviype, int root,
MPI_Comm comm).
-Each process (root process included) sends

the contents of its send buffer to the root
process.

- The root process receives the messages and
stores them in rank order.

- This routine is thread-safe. However, the
routine is not interrupt safe.

17 http://www.njyanggs.com/

== e i hr = 4= s
=2 AP, O] =) i cE,

Collective Communication

s Scatter

¢ int MPI_Scatter(void *sendbuf, int sendcnt,
MPI_Datatype sendtype, void *recvbuf, int
recvent, MPI_Datatype recviype, int root,
MPI_Comm comm),

- Sends data from one process to all other
processes in a communicator

-is the inverse operation to MPI_GATHER

- This routine is thread-safe. However, the
routine is not interrupt safe.

niversi . cho Co ﬂ % '3 I gle“ 18 http://www.njyangqgs.com/

== e i hr = 4= s
=2 AP, O] =) i cE,

Collective Communication

« All Gather

¢ int MPI_Allgather(void *sendbuf, int
sendcount, MPI_Datatype sendtype, void
*recvbuf, int recvcount, MPI_Datatype
recviype, MPI_Comm comm);

«Gathers data from all tasks and distribute
the combined data to all tasks

= MPI_ALLGATHER can be thought of as
MPI_GATHER, but where all processes
receive the result, instead of just the root.

= This routine is thread-safe. However, the

~__routine is not interrupt safe. _
19 http://www.njyanggs.com/

== e i hr = 4= s
=2 AP, O] =) i cE,

Collective Communication

ALL to ALL

¢ int MPI_Alltoall(void *sendbuf, int
sendcount, MPI_Datatype sendtype, void
*recvbuf, int recvcount, MPI_Datatype
recviype, MPI_Comm comm);
-is an extension of MPI_ALLGATHER to the
case where each process sends distinct data

to each of the receivers instead of the same
data.

= This routine is thread-safe. However, the
routine is not interrupt safe.

20 http://www.njyanggs.com/

niversit School of Computer Science & Engineering
A BN R % 5 TR X%

=22 dhebe b S s o=, s2n)
=2 AP, O] =) i cE,

Data Scoping to Protect Data

« Data Scope Attributes
¢ The default status can be modified with

default (shared | none)

¢ Scoping attribute clauses

shared(varname,...)

private(varname,...)

puter Science
.

21 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 -':'—//'f, sen)
=02 AL O =) S ciE,

Data Scoping to Protect Data

= The Private Clause

¢ Reproduces the variable for each thread
- Variables are un-initialized; C++ object is
default constructed
= Any value external fo the parallel region is
undefined void* work(float* c, int N) {
float x, y; Int i;

#pragma omp parallel for private(x,y)
for(i=0; I<N; i++) {

x =all]; y = bl[i];

e om/

SoutheaStUniversiti G School o omputer Scienc

_";I' ; 3 ! E‘ﬂ Il\\.l'il' WY WY ww s

=22 dhebe b S s o=, s2n)
=2 AP, O] =) i cE,

Data Scoping to Protect Data

= Example: Dot Product

float dot_prod(float* a, float* b, int N)
{

float sum = 0.0;
#pragma omp parallel for shared(sum)

for(int i=0; i<N; i++) {
sum += a[i] * b[i];

}

eturin sum; What is wrong?

23 http://www.njyangqgs.com/

=22 dhebe b S s o=, s2n)
=2 AP, O] =) i cE,

Data Scoping to Protect Data

=« Protect Shared Data

¢ Must protect access to shared, modifiable

d
ata float dot_prod(float* a, float* b, int N)

{

float sum = 0.0;
#pragma omp parallel for shared(sum)
for(int i=0; i<N; i++) {

#pragma omp critical
sum += ali] * b[i];

}

return sum;

Nup-/IWWW.njyanggs.com/

Southeast Universiti .. School |
A 5] »

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Programming with OpenMP

= Content
¢ What is PpenMP
¢ Parallel Regions
¢ Work-sharing Construct
¢ Data scoping to Protect Data
¢ Explicit Synchronization
¢ Scheduling Clauses
¢ Other helpful Construct and Clauses

25 http://www.njyangqgs.com/

2 IO S GaciE,

Explicit Synchronization
= OpenMP* Critical Construct

#pragma omp critical [(lock_name)]

¢ Defines a critical region on a structured

blOCk float R1,R2;

#pragma omp parallel
Threads wait their turn —at { float B;

atime, only one calls #pragma omp for

consum() thereby for(int i=0; i<niters; i++){
protecting_ Rl and R2 from B = big_job(i);

race conditions #pragma omp critical (R1_lock)
Naming the critical consum (B, &R1);

construct is optional, but A = bigger_job(1)

may increase performance | [EEVEETe MR oMK & & 4 or=1 BN G Ml 01819
consum (A, &R2);

Southeast Universiti &.» School of Computer Science &
A s : ¥ —

== e i hr = 4= s
=2 AP, O] =) i cE,

Explicit Synchronization

= OpenMP* Reduction Clause

reduction (op : list)

¢ The variables in “/is?* must be shared in
the enclosing parallel region

¢ Inside parallel or work-sharing construct:

= A PRIVATE copy of each list variable is
created and initialized depending on the “op”

- These copies are updated locally by threads

- At end of construct, local copies are
combined through “op” into a single value

and combined with the value in the original
SHARED variable

niversi School of Computer Science & Engineering 27 . =
G T e E e e http://www.njyanggs.com/

== e bl M2 = 2= s2n)
=2 AP, O] =) i cE,

Explicit Synchronization

= Reduction Example

#pragma omp parallel for reduction(+:sum)
for(i=0; I<N; i++) {

sum += a[i] * b[i];

}

¢ Local copy of sum for each thread

¢ All local copies of sum added together and
stored in “global” variable

niversity £..:a School of Computer Science
» - .

(=R 1 R - = -~

28 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 —N_//-f' sen)
=02 AL O =) S ciE,

Explicit Synchronization

= C/C++ Reduction Operations

¢ A range of associative operands can be used
with reduction

¢ Initial values are the ones that make sense
mathematically

Operand | Initial Value

&

Operand | Initial Value

29 http://www.njyangqgs.com/

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Programming with OpenMP

= Content
¢ What is PpenMP
¢ Parallel Regions
¢ Work-sharing Construct
¢ Data scoping to Protect Data
¢ Explicit Synchronization
¢ Scheduling Clauses
¢ Other helpful Construct and Clauses

30 http://www.njyangqgs.com/

Scheduling Clauses

= Assigning Iterations

¢ The Schedule clause affects how loop iterations are
mapped onto threads

schedule(static [, chunk])

+ Blocks of iterations of size “chunk” to thread
- Round robin distribution

schedule(dynamic [, chunk])

+ Threads grab “chunk” iterations

+ When done with iterations, thread request next set
schedule(guided [, chunk])

- Dynaric schedule starting with large block

- Size of the blocks shrink; no smaller than “chunk”

31 http://www.njyangqgs.com/

= e T
=2 AP, O] =) i cE,

Scheduling Clauses

= Which Schedule to Use

Schedule Clause When Tio Use

STATIC Predictable and similar work
per iteration

DYNAMIC Unpredictable, highly variable
work per iteration

GUIDED Special case of dynamic to
reduce scheduling overhead

32 http://www.njyanggs.com/

== e bl M2 = 2= s2n)
=2 AP, O] =) i cE,

Scheduling Clauses

= Schedule Clauses Example

#pragma omp parallel for schedule(static, 8)
for(l = start; | <=end; 1+=2) {

If (TestForPrime(i)) gPrimesFound++;

¢ Iterations are divided into chunks of 8
+If start = 3, then rm:r chunk is
i=(3,5,7,9,11,13,15,17}

Southeast University .. School o omputer Science
ﬁm v -

33 http://www.njyangqgs.com/

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Programming with OpenMP

= Content
¢ What is PpenMP
¢ Parallel Regions
¢ Work-sharing Construct
¢ Data scoping to Protect Data
¢ Explicit Synchronization
¢ Scheduling Clauses
¢ Other helpful Construct and Clauses

34 http://www.njyangqgs.com/

== e bl M2 = 2= s2n)
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

=« Parallel Sections

#pragma omp parallel sections

{

#pragma omp section —
phasel();

#pragma omp section
phase2();
#pragma omp section
phase3();

serial parallel

SoutheaStUniversiti &..» School of Computer Science & Engineering 35
o b - Al

i B N OB %2 5 T O

http://www.njyangqgs.com/

== e bl M2 = 2= s2n)
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

= Single Construct

¢ Denotes block of code to be executed by
only one thread
- First thread to arrive is chosen
¢ Implicit barrier at end
#pragma omp parallel

{
DoManyThings();

#pragma omp single

{

ExchangeBoundaries();
} [/ threads wait here for single
DoManyMoreThings();

Js.com/

== e bl M2 = 2= s2n)
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

= Master Construct

¢ Denotes block of code to be executed
only by the master thread

¢ No implicit barrier at end
#pragma omp parallel

{

DoManyThings();
#pragma omp master
{ /[If not master skip to next stmt
ExchangeBoundaries();

}
DoManyMoreThings();

http://www.njyangqgs.com/

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

« Implicit Barriers
¢ Several OpenMP* constructs have implicit
barriers

- parallel
- for
- single

¢ Unnecessary barriers hurt performance
- Waiting threads accomplish no workl

¢ Suppress implicit barriers, when safe, with
the nowait clause

School of Computer Science
.

niversi nai -
Wi & B R 2% 5 T &

38 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 :—_w/,.f' sen)
=2 LI =) Z T,

=« Nowait Clause

#pragma omp for
nowait

Other helpful Construct and Clauses
for(...)

#pragma omp single nowait
{[...]1}
{0y

Use when threads would wait between independent
computations
#pragma omp for schedule (dynamic, 1) nowait
for(int 1=0; i<n; i++)
a[i] = bigFuncl(i);

#pragma omp for schedule (dynamic, 1)
for(int j=0; j[<m; |++)
b[j] = bigFunc2(j);

=22 dhebe b S s o=, s2n)
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

« Barrier Construct

¢ Explicit barrier synchronization
¢ Each thread waits until all threads arrive

#pragma omp parallel shared (A, B, C)
{

DoSomeWork(A,B);

printf(* Processed A into B\n");
#pragma omp barrier

DoSomeWork(B,C);

printf(* Processed B into C\n");

40 http://www.njyangqgs.com/

= Sbe il he = 2= s2o)
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

= Atomic Construct

¢ Special case of a critical section

¢ Applies only to simple update of memory
location

#pragma omp parallel for shared(x, y, index, n)
for (1 =0;1<n,; I++){
#pragma omp atomic

x[index[i]] += work1(i);
y[i] +=work2(i);

41 http://www.njyangqgs.com/

== e bl M2 = 2= s2n)
=2 AP, O] =) i cE,

Other helpful Construct and Clauses

=« OpenMP* API
¢ 6et the thread number within a team

Int omp_get_thread num(void)

¢ Increment semaphore (Post operation)

Int omp_get_ num_thread (void)
¢ Usually not needed for OpenMP codes

- Can lead to code not being serially

rons]s’rvn’r
- Does have spe CJf]C uses (debugging)
@/‘/UJJ‘ include a header file

#include <omp.h>

Southeast Universitii choc; of;r Computer_ Science & E:nginéering 42 http://WWW.njyangqs.C0ml

Programming with OpenMpP==#~+=*=
What's Been Covered
= OPCHMP* is:
¢ A simple approach to parallel programming
for shared memory machines
= We explored basic OpenMP coding on how to:
¢ Make code regions parallel (omp parallel)
¢ Split up work (omp for)
¢ Categorize variables (omp private....)

¢ Synchronize (omp critical...)

= We reinforced fundamental OpenMP concepts
through several labs

43 http://www.njyangqgs.com/

Advanced Concepts

Southeast Universiti ho;! of Computer Science & Engineering 44 http:llwww‘lnjyangqs‘coml

== “teiuiit =12 = 4= =0
=2 AP, O] =) i cE,

More OpenMP*

= Data environment constructs
¢FIRSTPRIVATE
¢LASTPRIVATE
¢ THREADPRIVATE

45 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 —N_//-f' sen)
=02 AL O =) S ciE,

Firstprivate Clause

=« Variables initialized from shared variable
« C++ objects are copy-constructed

Incr=0;
#pragma omp parallel for firstprivate(incr)
for (1=0;I<=MAX;I++) {

If ((19%02)==0) incr++;
A()=incr;

46 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 :4/,.?' sen)
=2 AP, O] =) i cE,

Lastprivate Clause

= Variables update shared variable using value
from last iteration

« C++ objects are updated as if by assignment

void sg2(int n, double *lastterm)

{

double x; Iint I;
#pragma omp parallel
#pragma omp for lastprivate(x)
for (1=0;1<n; i++){

x = ali]*a[l] + b[i]*b[1];

b[i] = sqrt(x);
}

lastterm = X;

http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 -':'—//'f, sen)
=02 AL O =) S ciE,

Threadprivate Clause

= Preserves global scope for per-thread storage
= Legal for name-space-scope and file-scope
= Use copyin to initialize from master thread

struct Astruct A;
#pragma omp threadprivate(A)

Private copies of “A”

#pragma omp parallel persist between
copyin(A) regions
do_something to(&A)

#pragma omp parallel
do_something else to(&A);

Southeast Universitii e

48 http://www.njyangqgs.com/

=22 dhebe b S s o=, s2n)
=2 AP, O] =) i cE,

Performance Issues

= Idle threads do no useful work
= Divide work among threads as evenly as
possible

¢ Threads should finish parallel tasks at same
time

= Synchronization may be necessary

¢ Minimize time waiting for protected
resources

49 http://www.njyangqgs.com/

== =t=is :'r-_'— = =3 -':'—//'f, sen)
=02 AL O =) S ciE,

Load Imbalance

= Unequal work loads lead to idle threads
and wasted time.

#pragma omp parallel

1

B Busy
H|dle

'8

50 http://www.njyanggs.com/

#pragma omp for

for(; ;){

2w}

== =t=is :'r-_'— = =3 —N_//-f' sen)
=02 AL O =) S ciE,

Synchronization

= Lost time waiting for locks

#pragma omp parallel

{ BBusy
=g = H|dle
#pragma omp critical [T

o1 http://www.njyanggs.com/

Lol = G R,

\b
N
3

Performance Tuning

= Profilers use sampling to provide
performance data.

= Traditional profilers are of limited use
for tuning OpenMP*:
¢ Measure CPU time, not wall clock time

¢ Do not report contention for
synchronization objects

¢ Cannot report load imbalance
¢ Are unaware of OpenMP constructs

Programmers need profllers specmcally de3|gned o ©OpPeRVIP:

.njyangqgs.com/

Static Scheduling: Doing It By™ """
Hand

= Must know:

¢ Number of threads (Nthrds)
¢ Each thread ID number (id)

= Compute start and end iterations:

#pragma omp parallel

{

Int I, Istart, iend,;
Istart =id * N / Nthrds;
lend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++){
cli] =ali] +b[i];}
Southeast Uni \ }

versit
Fm K% KN 5 HL B 2 5 T B 2% B

| It!.'J-ll \LAAAALAEL ijal lqu-comI

	Multi-core Architecture and Programming
	Programming with MPI
	What is MPI
	What is MPI
	What is MPI
	What is MPI
	What is MPI
	Programming with MPI
	Basic of programming with MPI
	Basic of programming with MPI
	Basic of programming with MPI
	Basic of programming with MPI
	Basic of programming with MPI
	Programming with MPI
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Data Scoping to Protect Data
	Data Scoping to Protect Data
	Data Scoping to Protect Data
	Data Scoping to Protect Data
	Programming with OpenMP
	Explicit Synchronization
	Explicit Synchronization
	Explicit Synchronization
	Explicit Synchronization
	Programming with OpenMP
	Scheduling Clauses
	Scheduling Clauses
	Scheduling Clauses
	Programming with OpenMP
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Other helpful Construct and Clauses
	Programming with OpenMP�What’s Been Covered
	More OpenMP*
	Firstprivate Clause
	Lastprivate Clause
	Threadprivate Clause
	Performance Issues
	Load Imbalance
	Synchronization
	Performance Tuning
	Static Scheduling: Doing It By Hand

